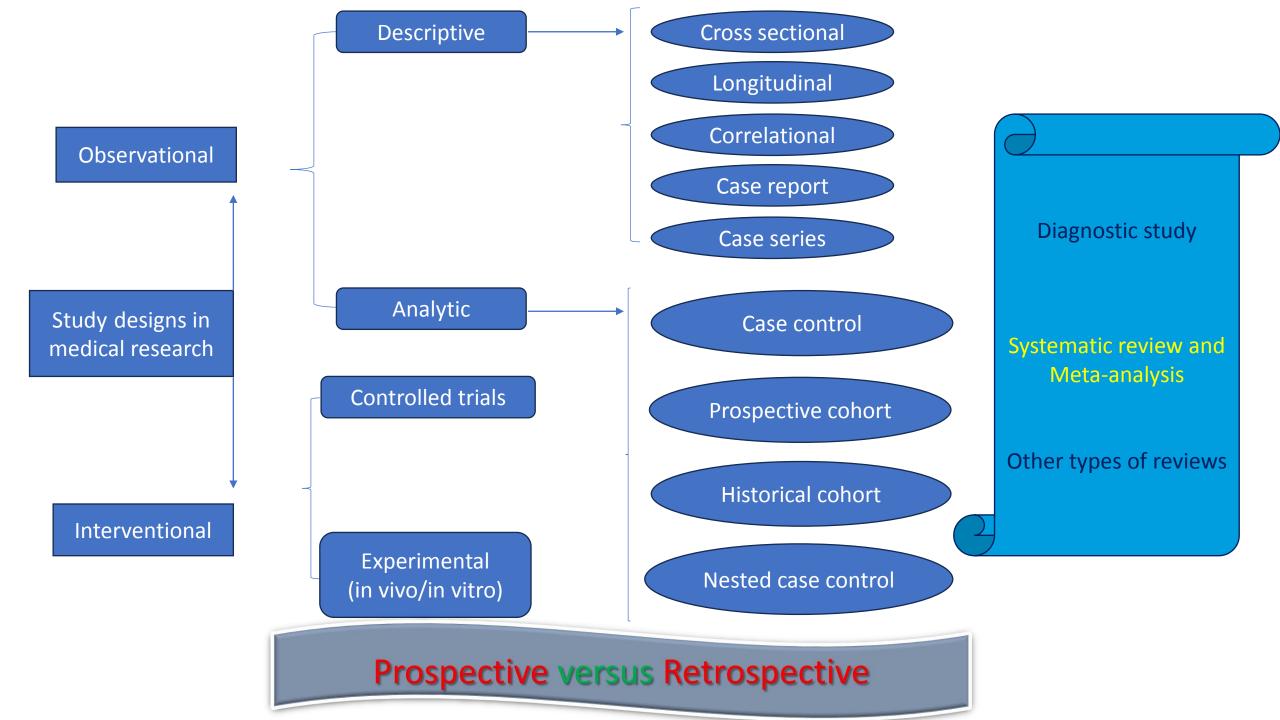
Principles of scientific writing in medical research

Amirreza Keyvanfar, MD-MPH
Postdoc research fellow
Infectious Diseases and Tropical Medicine Research Center
Shahid Beheshti University of Medical Sciences
Tehran, Iran

A review of contents

- Original articles
 - Observational studies
 - Interventional studies
- Case reports/series
- What makes good writing?


How to write a scientific paper?

Study design

Instructions for authors of the journal

• The author's innovation

How to write an original article?

- Results
- Method

- Introduction/Discussion
- Conclusion
- References
- Abstract
- Title
- Others(Author's name, Affiliations, Decelerations)

What makes good writing?

 Dysregulation of physiologic microRNA (miRNA) activity has been shown to play an important role in tumor inhibition and progression, including gliomagenesis. Therefore, molecular species that can regulate miRNA activity on their target RNAs without affecting the expression of relevant mature miRNAs may play equally relevant roles in cancer.

 Changes in microRNA expression play a role in cancer, including glioma. Therefore, events that disrupt microRNAs from binding to their target RNAs may also promote cancer.

What makes good writing?

- Complex ideas don't require complex language.
- Cut unnecessary words and phrases.
- Don't use unnecessary jargons & acronyms.
- Change repetitive words or phrases.
- Eliminate negative!
- Use the active voice (subject + verb + object).
- Use past tense for completed actions.
- Use strong verbs; don't kill verbs by turning them to nouns.
- Minimize the distance between subject and the main verb.

Method

- Study design and setting(location, time,...)
- Study population/ Target population
- Inclusion and exclusion criteria
- Sample size and sampling vs. census method

Probability sampling

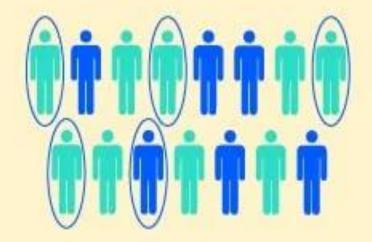
Non Probability sampling

Simple random

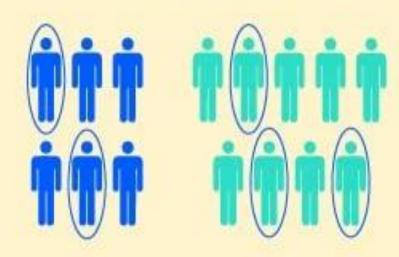
Cluster Sampling

Systematic Sampling

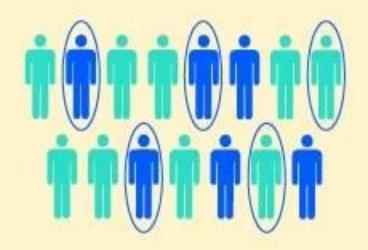
Stratified Sampling

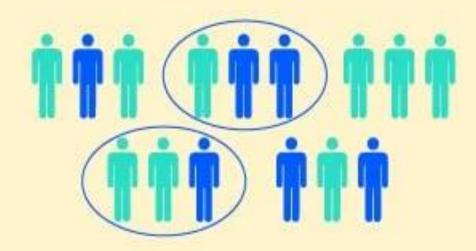

Quota Sampling

Judgement Sampling


Convenience Sampling

Snowball Sampling


SIMPLE RANDOM SAMPLE


STRATIFIED SAMPLE

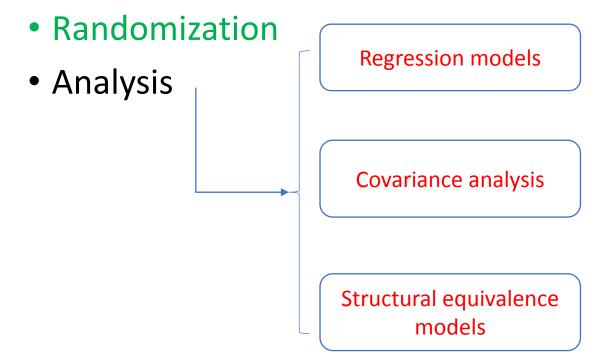
SYSTEMATIC SAMPLE

CLUSTER SAMPLE

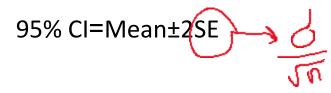
Method

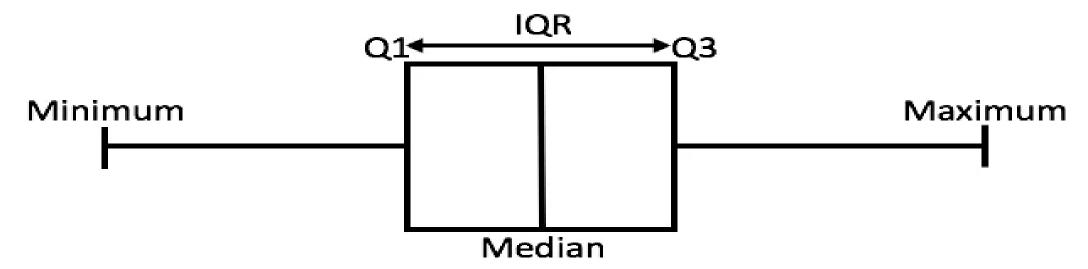
- Study design and setting(location, time,...)
- Study population/ Target population
- Inclusion and exclusion criteria
- Sample size and sampling vs. census method
- Data collection
- Statistical analysis
- Ethical consideration

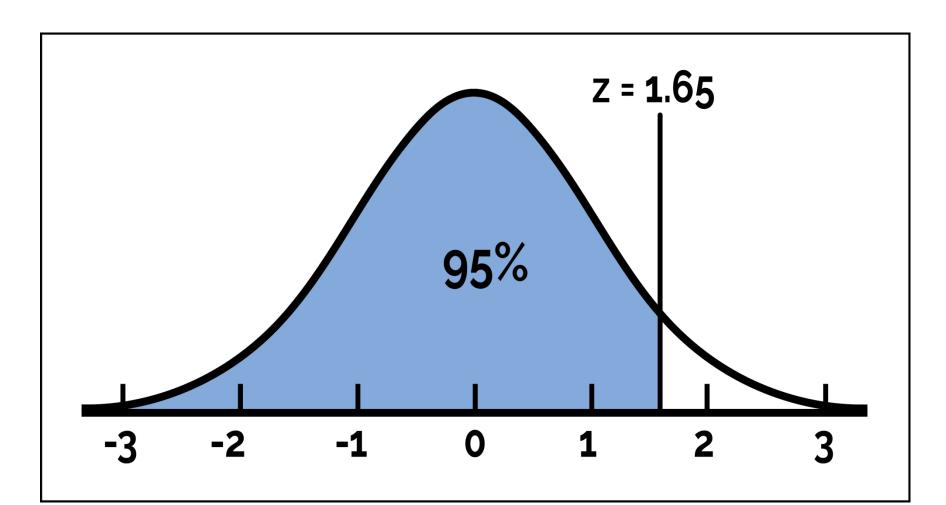
Data Collection


- Based on study design and objective
- Questionnaire based
- Checklist based
- Laboratory based
- Mixed

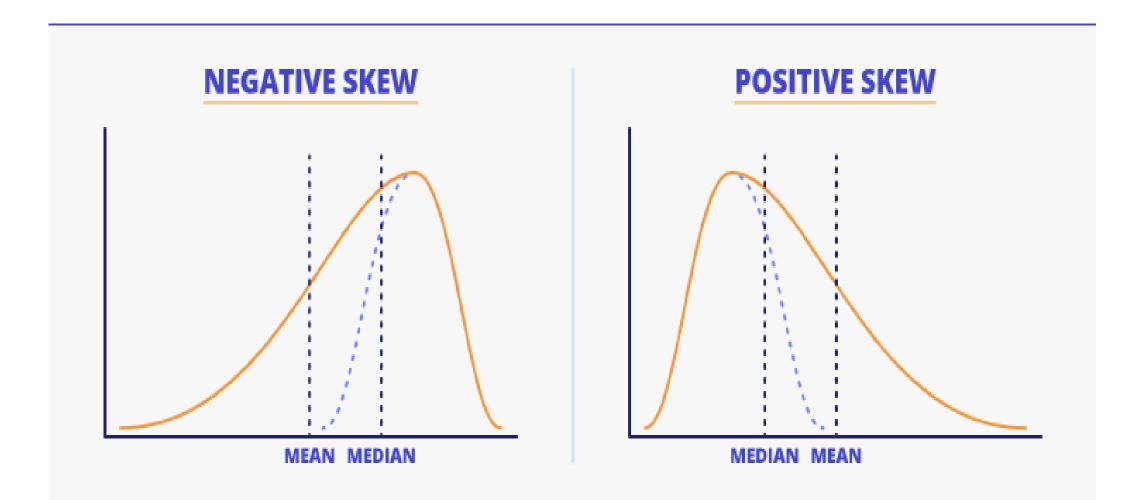
What? How? Who? Why? Where? When?


How to control confounding variables?


- Matching
- Restriction
- Blocking


Descriptive statistics

Frequency, Percentage, Median, IQR, Mean, SD, Mean Difference (95%CI)



- Descriptive statistics
- Are data normal distributed?

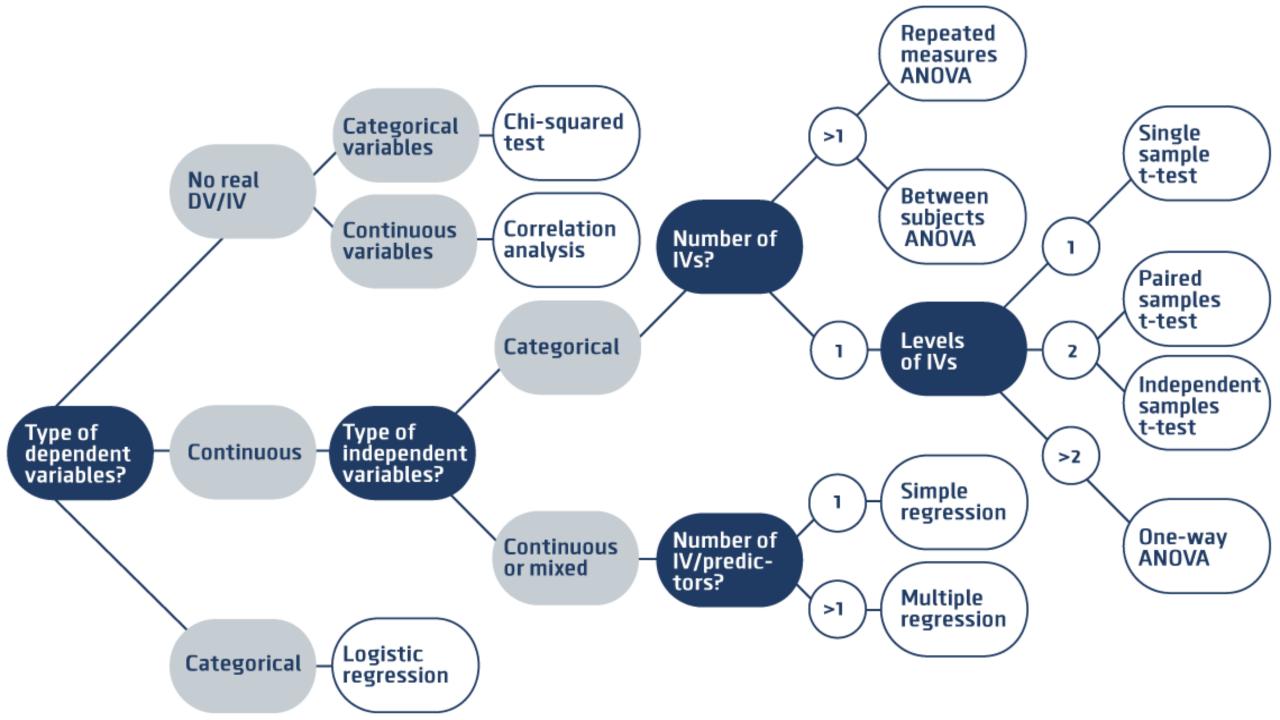
- Descriptive statistics
- Are data normal distributed?

- Inferential statistics
 - based on study design, type of variables, normal distribution of variables, pairedness of variables, univariate/ multivariate analysis, time event analysis (survival analysis)
 - Statistical test

Statistical Software details and probability cut off

Ethical consideration

Ethical codes

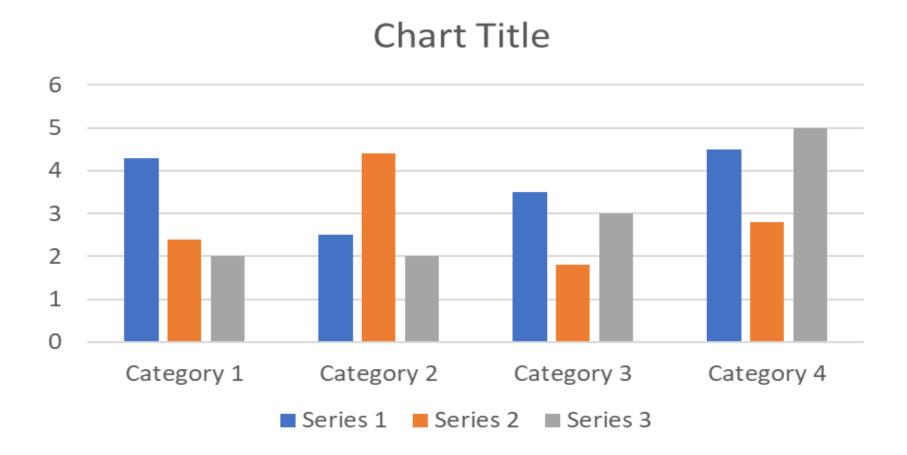

Informed consent

Confidentiality and privacy

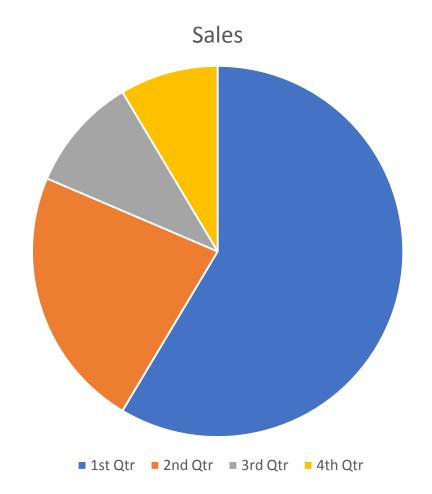
• Ethical considerations in animal studies

• Baseline characteristics

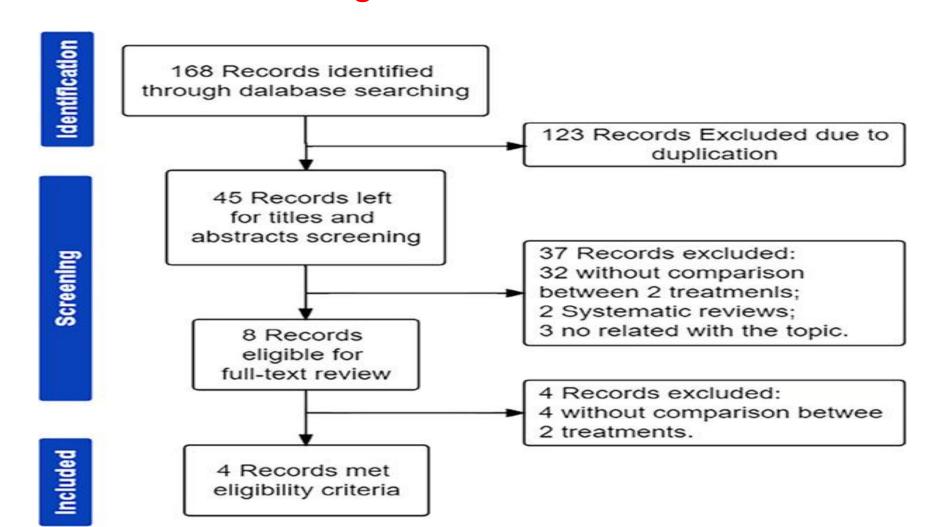
Demographic characteristics


Epidemiologic characteristics

Compare main variables


Be innovative and intelligent to better visualize the data

Report findings with both descriptive and inferential results


• Be innovative and intelligent to better visualize the data

• Be innovative and intelligent to better visualize the data

Be innovative and intelligent to better visualize the data

Report findings with both descriptive and inferential results

Table 1. Baseline characteristics and medical history of the patients					
Baseline characteristics					
Age (years)	43.46±.9.90	43.45±11.48	0.845ª		
Sex			0.839 ^b		
Male	70(67.3)	70(68.6)			
Female	34(32.7)	32(31.4)			
Educational status			<0.001 ^b		
Elementary school	71(68.3)	39(38.2)			
Secondary school	27(26.0)	50(49.0)			
University	6(5.7)	13(12.8)			
Body mass index (kg/m²)	26.56±5.32	27.02±4.53	0.435ª		
Tobacco smoking	53(51.0)	48(47.1)	0.575 ^b		
Alcohol consumption	15(14.4)	10(9.8)	0.310 ^b		
Drug abuse	16(15.4)	1(1.0)	<0.001°		
Medical history					
Interval from HIV diagnosis (weeks)	20.99±32.59	52.82±46.67	<0.001 ^a		
Current HAART	58(55.8)	99(97.1)	<0.001 ^b		
Duration of HAART (weeks)	17.45±20.74	53.27±42.23	<0.001 ^a		
History of oral candidiasis	18(17.3)	0(0)	<0.001 ^a		
Medications in the last 3 months					
Corticosteroids	2(1.9)	0(0)	0.498 ^c		
Proton pump inhibitors	0(0)	0(0)	N/A		

Values were described with frequency (%) or mean±standard deviation.

HAART: highly active antiretroviral therapy, HIV: human immunodeficiency virus, N/A: not applicable

a Independent-samples t test, b Chi-square test, c Fisher's exact test

Report findings with both descriptive and inferential results

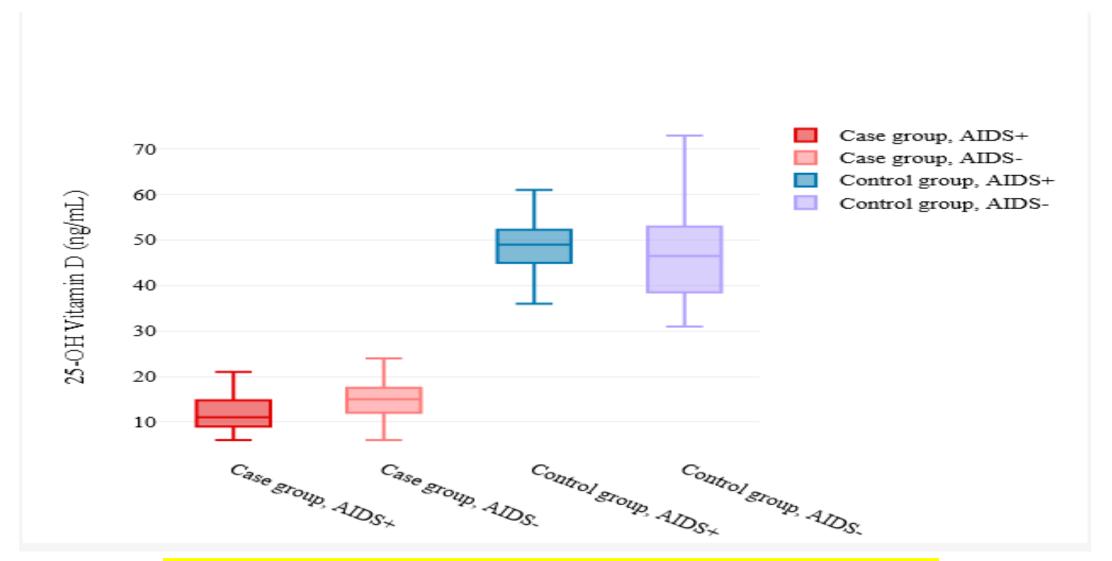
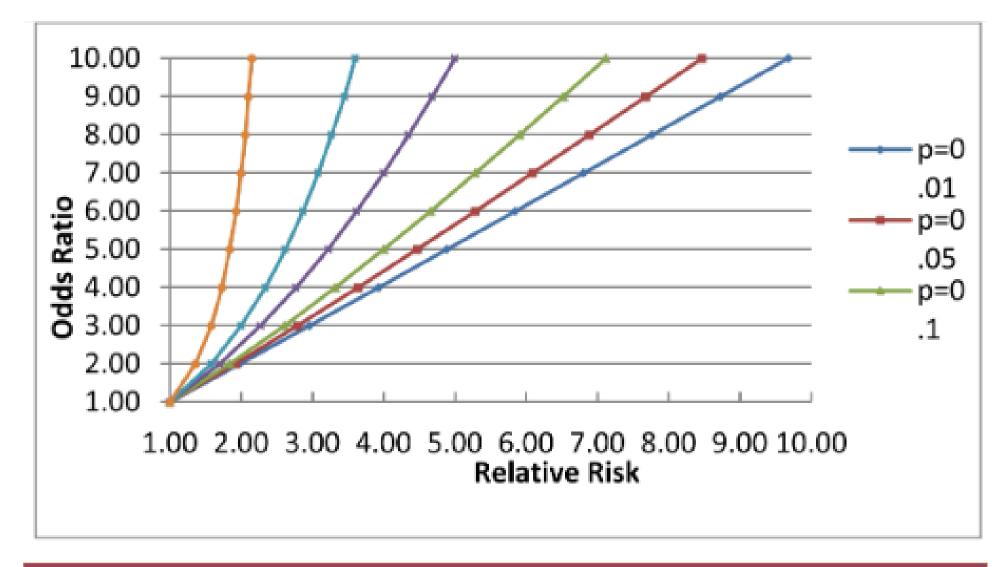


Figure 2- 25-OH Vitamin D3 levels in the case and control groups by AIDS status

What is **OR** and **RR**?


$$OR = \frac{(A/C)}{(B/D)} = \frac{AD}{BC}$$

$$RR = \frac{(A/A+B)}{(C/C+D)}$$

	Disease (Case)	No Disease (Control)
Exposed	А	В
Unexposed	С	D

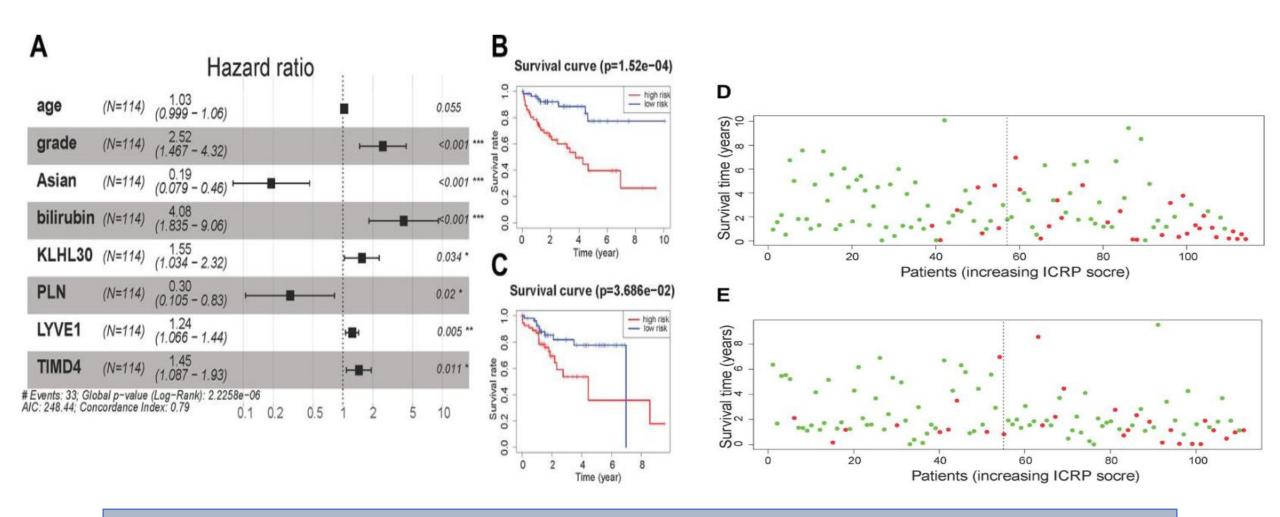
 A relative risk or odds ratio greater than one indicates an exposure to be harmful, while a value less than one indicates a protective effect.

What is **OR** and **RR**?

Regression models

• Logistic regression

	Unadjusted model		Adjusted model	
	OR (95% CI)	P value	OR (95% CI)	P value
Age	0.983 (0.689, 1.508)	0.852	-	-
Sex		0.667	-	-
Male	Reference			
Female	0.701 (0.138, 3.546)			
BMI	0.921 (0.679, 1.367)	0.465	-	-
Educational status		0.025		<0.001
Elementary	Reference		Reference	
Secondary and above	0.067 (0.006, 0.713)		0.032 (0.002, 0.100)	
Tobacco smoking	0.041 (0.001, 1.723)	0.194	-	-
Alcohol consumption	0.268 (0.068, 1.060)	0.161	-	-
Drug abuse	7.824 (1.862, 32.890)	<0.001	7.330 (0.075, 720.054)	0.395
Interval from HIV diagnosis	0.921 (0.846, 1.003)	0.158	-	-
Current HAART	0.005 (0.001, 0.010)	<0.001	0.005 (0.001, 0.014)	<0.001
History of oral candidiasis	20.589 (19.203, 22.171)	<0.001	20.114 (18.135, 21.957)	< 0.001
CD4 count (cells/mm3)		0.016		<0.001
<200	Reference		Reference	
>200	0.120 (0.001, 0.309)		0.004 (0.001, 0.006)	
Viral load		<0.001		<0.001
Undetectable	Reference		Reference	
Detectable	8.000 (5.402, 13.060)		12.181 (1.108, 133.392)	
25-OH Vitamin D ₃ level	0.521 (0.411, 0.659)	< 0.001	0.011 (0.008, 0.015)	< 0.001


Regression models

• Linear regression

Table 3. Multivariate linear regression model to predict the size of UF

Variables	Regression coefficient	95 % Confidence interval	P-value
Constant	97.540	(44.988, 134.275)	<0.001
Age	-0.931	(-1.657, -0.204)	0.012
Body mass index	-1.153	(-2.349, 0.043)	0.059
Platelet to lymphocyte ratio	0.020	(-0.013, 0.052)	0.237
number of UF	22.418	(16.360, 28.476)	<0.001

Cox regression

Kong W, Gao M, Jin Y, Huang W, Huang Z, Xie Z. Prognostic model of patients with liver cancer based on tumor stem cell content and immune process. Aging (Albany NY). 2020 Aug 27;12(16):16555-16578. doi: 10.18632/aging.103832. Epub 2020 Aug 27. PMID: 32852285; PMCID: PMC7485734.

How to deal with missing data?

Omitting

Analysis imputation
 Propensity score matching

Discussion

Key findings

Interpretation

Compare your result with the result of previous studies

Consistent ——— Pathophysiology
Inconsistent ——— Adjustments for inconsistencies

Study limitations

Suggestions for further studies

Conclusions

- Summarize key points
- Emphasize significance

- Provide closure
- Suggest further implication

Our findings support the non-inferiority of the FluGuard vaccine to the Vaxigrip vaccine regarding immunogenicity. Furthermore, the safety profile of the above vaccines does not differ. In conclusion, the FluGuard vaccine has acceptable immunogenicity and safety for adults aged 18-60. Further studies are required to explore different aspects of FluGuard seasonal influenza vaccines.

Introduction

Background

Objective

What makes good writing?

- Data vs. datum
- Effect vs. affect
- Compare to vs. compare with
- Which vs. that
- Don't use they/their when subject is singular.
- Use appropriate punctuation to better organize the sentence.
- Use transition words.

Abstract

STRUCTURED ABSTRACT

UNSTRUCTURED ABSTRACT

Divided into clear sections with distinct headings

Headings usually consist of objective, methods, results, and conclusions

Written in a format similar to that of a narrative summary

Consists of one paragraph without any heading for objective, methods, etc.

Readers need more time to locate the relevant information

Assists in quick understanding.
Used predominantly in
medicine-related publications

•enago academy

Title

Interrogative or Declarative

Pneumonia in a patient with combined variable immunodeficiency: COVID-19 or Pneumocystis Pneumonia?

Use of punctuations in title

Unbiased title?

Side effects after COVID-19 vaccination: a comparison between the most common available vaccines in Iran

Menstrual disturbances following COVID-19 vaccination: A probable puzzle about the role of endocrine and immune pathways

Randomized controlled trials

CONSORT checklist 2010 (25 items)

TITLE & ABSTRACT INTRODUCTION

- Background
- Objectives

METHODS

- Trial design
- Participants
- Interventions
- Outcomes
- Sample size
- Randomization

Sequence generation Allocation concealment Implementation

- Blinding (Masking)
- Statistical methods

RESULTS

- Participant flow
 - Recruitment
 - Baseline data
 - Numbers analyzed
 - Outcomes and Estimation
 - Ancillary analyses
 - Harms

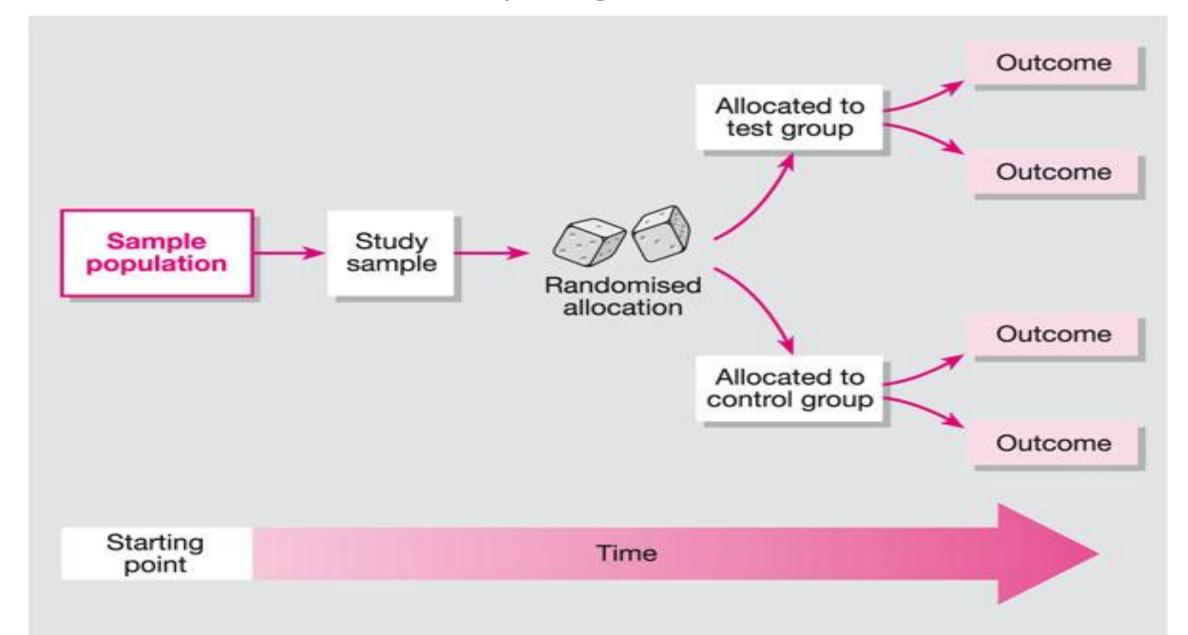
DISCUSSION

- Limitations
- Generalisability
- Interpretation

OTHER INFORMATION

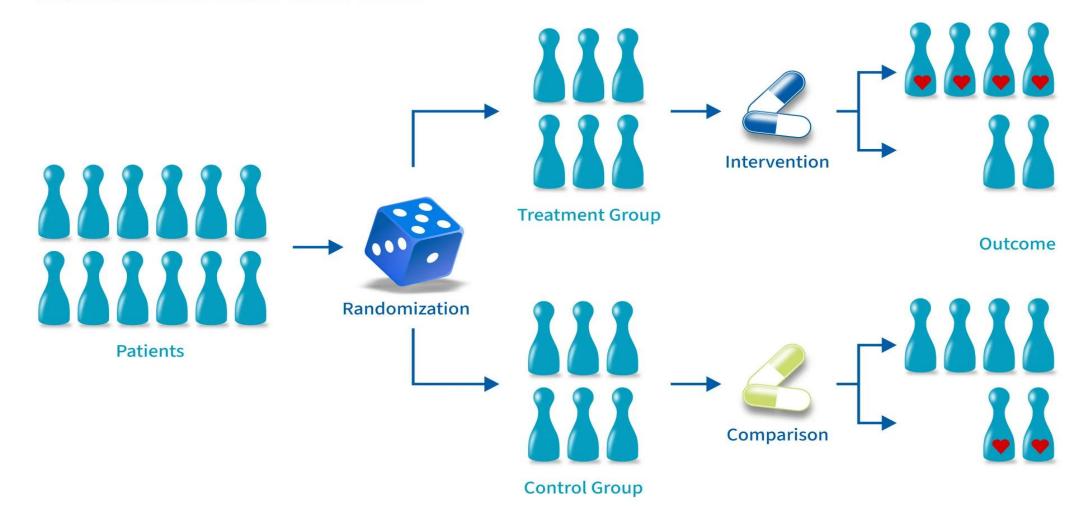
- Registration
- Protocol
- Funding

Method (RCT)

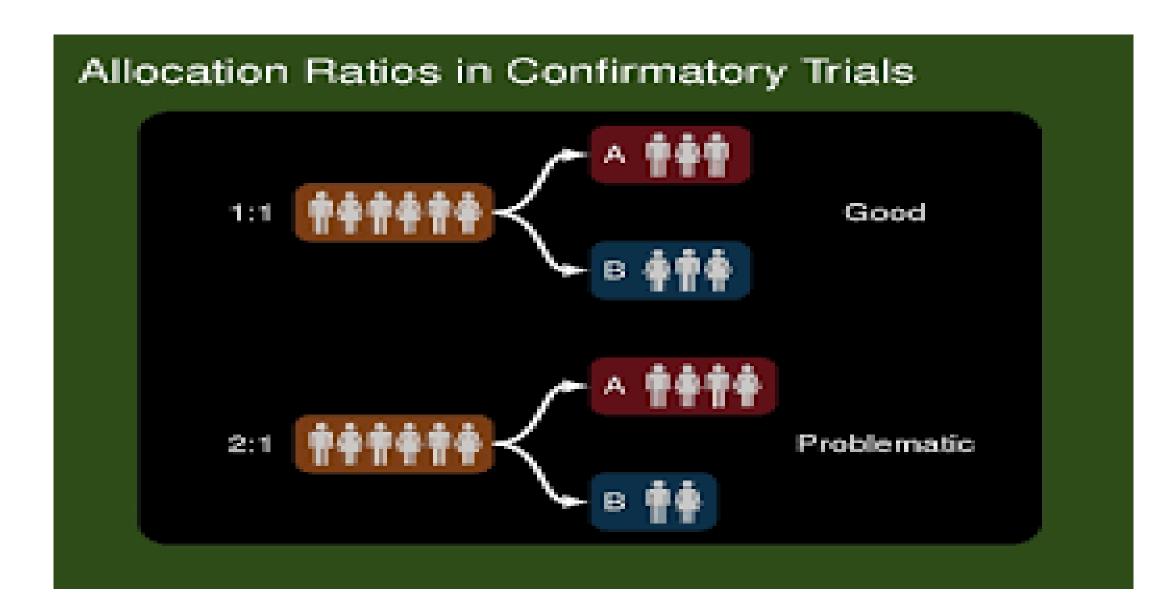

- Study design
 - Registry
 - Sampling
 - Randomization
 - Allocation ratio
 - Blinding

Study design and setting

This double-blind, non-inferiority, randomized controlled trial with two parallel arms was conducted at Labbafinejad Hospital, Tehran, Iran, between October 2022 and February 2023. The study protocol was approved by the Iranian Registry of Clinical Trials (IRCT20210901052358N5). ...


- Randomized versus Non-randomized
- Intervention
- Outcome
 - Primary
 - Secondary

Randomization, Sampling, Allocation



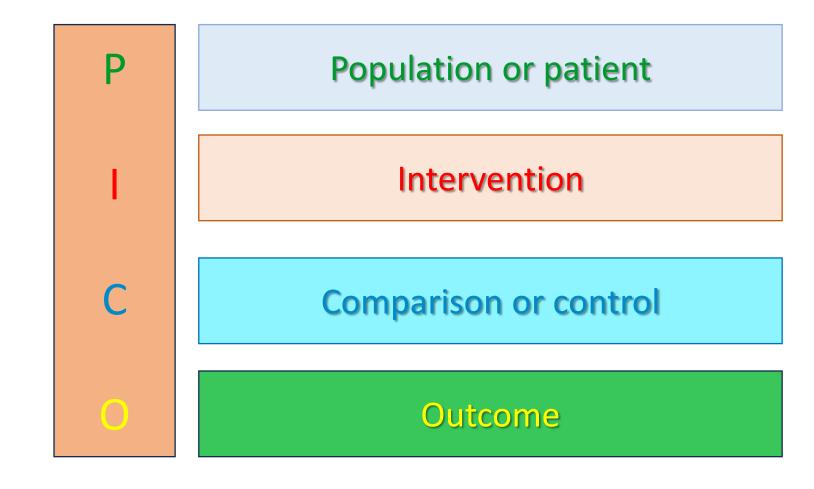
Randomization, Sampling, Allocation

Randomized Controlled Trial

Randomization, Sampling, Allocation

Results			
Participant flow (a diagram is strongly recommended)	13a	For each group, the numbers of participants who were randomly assigned received intended treatment and were analyzed for the primary outcome	
	13b	For each group, losses and exclusions after randomization, together with reasons	
Recruitment	14a	Dates defining the periods of recruitment and follow-up	
	14b	Why the trial ended or was stopped	
Baseline data	15	A table showing the baseline demographic and clinical characteristics for each group	
Numbers analyzed	16	For each group, number of participants (denominator) included in each analysis and whether the analysis was by original assigned groups	
Outcomes and estimation	17a	For each primary and secondary outcome, results for each group, and the estimated effect size and its precision (such as 95% confidence interval)	
	17b	For binary outcomes, presentation of both absolute and relative effect sizes is recommended	
Ancillary analyses	18	Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing pre-specified from exploratory	
Harms	19	All important harms or unintended effects in each group (for specific guidance see CONSORT for harms)	

Abstract


Background: This study aimed to evaluate the non-inferiority of the FluGuard (a quadrivalent recombinant vaccine manufactured by Nivad Pharmed Salamat Company in Iran) by comparing its immunogenicity and safety with Vaxigrip Tetra (a quadrivalent inactivated vaccine manufactured by Sanofi Pasteur in France). Materials and methods: In this double-blind, randomized controlled trial, eligible volunteers aged 18-60 were randomized to receive either FluGuard or Vaxigrip Tetra vaccines. Immunogenicity was evaluated using the Hemagglutination Inhibition (HAI) assay and reported with the geometric mean titer (GMT), seroprotection, and seroconversion. In addition, vaccine safety was assessed by interviewing participants through phone calls. Results: Out of 110 randomized volunteers, 51 and 53 were entered into the final analysis in the Vaxigrip and FluGuard groups, respectively. Vaxigrip had a higher seroprotection rate for the H1N1 strain compared with FluGuard (98% vs. 91%). Besides, FluGuard had higher seroprotection rates for H3N2 (74% vs. 69%), B-Yamagata (87% vs. 84%), and B-Victoria (66% vs. 41%) strains compared with Vaxigrip. In all four strains, FluGuard was noninferior to Vaxigrip with the upper bounds of the 95% CI on the ratio of the GMTs < 1.5: H1N1 (1.25), H3N2 (0.94), B-Yamagata (0.62), and B-Victoria (0.59). Furthermore, FluGuard was non-inferior to Vaxigrip with the upper bounds of the 95% CI on the difference between the seroconversion rates < 10%: H1N1 (2%), H3N2 (10%), B-Yamagata (-10%), and B-Victoria (-29%). The prevalence of solicited adverse drug reactions did not differ between groups. Furthermore, participants did not experience serious adverse events.

Conclusion: Our findings support the non-inferiority of the FluGuard vaccine to the Vaxigrip vaccine regarding immunogenicity and safety.

Keywords: Influenza vaccines, Immunogenicity, Safety, Vaxigrip, FluGuard

Title(RCT)

• PICO: Study design

Case report

- Introduction
 - Novelty
 - Rarity
 - Life threatening condition
 - Clinical implications
- Case Presentation

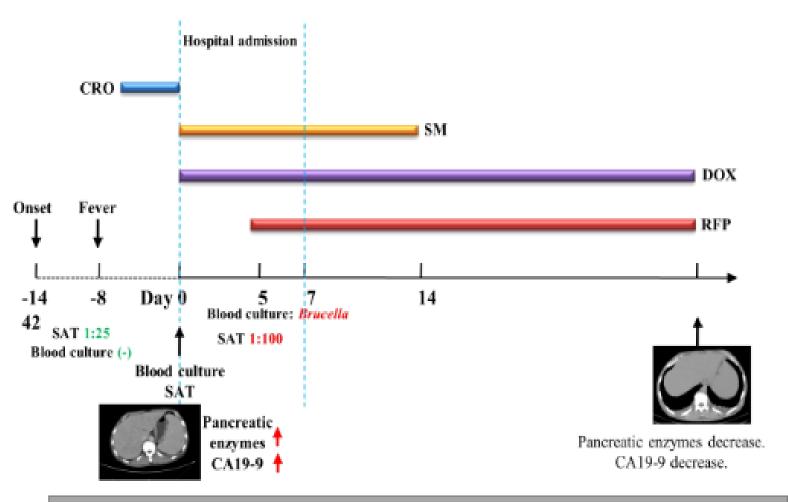
Case report

- Introduction
- Case presentation

Timeline trend

Complaint

RF


PΙ

Ph/E

Lab tests

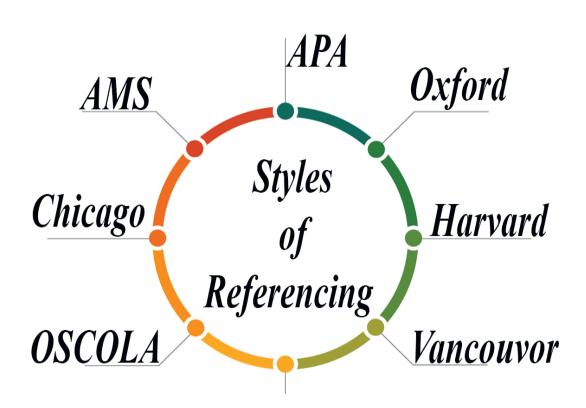
Imaging

F/W

Shi L, Wang S, Li X, Li X, Li Y, Wang Y. Acute Brucella infection associated with splenic infarction: a case report and review of the literature. Frontiers in Cellular and Infection Microbiology. 2023 Oct 4;13:1234447.

Treatment (dosage, duration, interval, route of administration, generic drug name)

CARE Checklist of information to include when writing a case report



Topic	Item	Checklist item description	Reported on Line
Title	1	The diagnosis or intervention of primary focus followed by the words "case report"	
Key Words	2	2 to 5 key words that identify diagnoses or interventions in this case report, including "case report"	
Abstract	За		
(no references) 3b	3Ь	Main symptoms and/or important clinical findings	
	3c	The main diagnoses, therapeutic interventions, and outcomes	
	3d	Conclusion—What is the main "take-away" lesson(s) from this case?	
Introduction	4	One or two paragraphs summarizing why this case is unique (may include references)	
Patient Information	5a	De-identified patient specific information	
	5b	Primary concerns and symptoms of the patient	
	5c	Medical, family, and psycho-social history including relevant genetic information	
	5d	Relevant past interventions with outcomes	
Clinical Findings	6	Describe significant physical examination (PE) and important clinical findings	
Timeline	7	Historical and current information from this episode of care organized as a timeline	
Diagnostic 8a		Diagnostic testing (such as PE, laboratory testing, imaging, surveys)	
Assessment	8b	Diagnostic challenges (such as access to testing, financial, or cultural)	
	8c	Diagnosis (including other diagnoses considered)	
	8d	Prognosis (such as staging in oncology) where applicable	
Therapeutic 9a		Types of therapeutic intervention (such as pharmacologic, surgical, preventive, self-care)	
Intervention	9b	Administration of therapeutic intervention (such as dosage, strength, duration)	
	9c	Changes in therapeutic intervention (with rationale)	
Follow-up and	10a	Clinician and patient-assessed outcomes (if available)	
Outcomes	10b	Important follow-up diagnostic and other test results	
	10c	Intervention adherence and tolerability (How was this assessed?)	
	10d	Adverse and unanticipated events	
	11a	A scientific discussion of the strengths AND limitations associated with this case report	
	11b	Discussion of the relevant medical literature with references.	
	11c	The scientific rationale for any conclusions (including assessment of possible causes)	
	11d	The primary "take-away" lessons of this case report (without references) in a one paragraph conclusion	
Patient Perspective	12	The patient should share their perspective in one to two paragraphs on the treatment(s) they received	
Informed Consent	13	Did the patient give informed consent? Please provide if requested	Yes 🗌 No 🗌

References

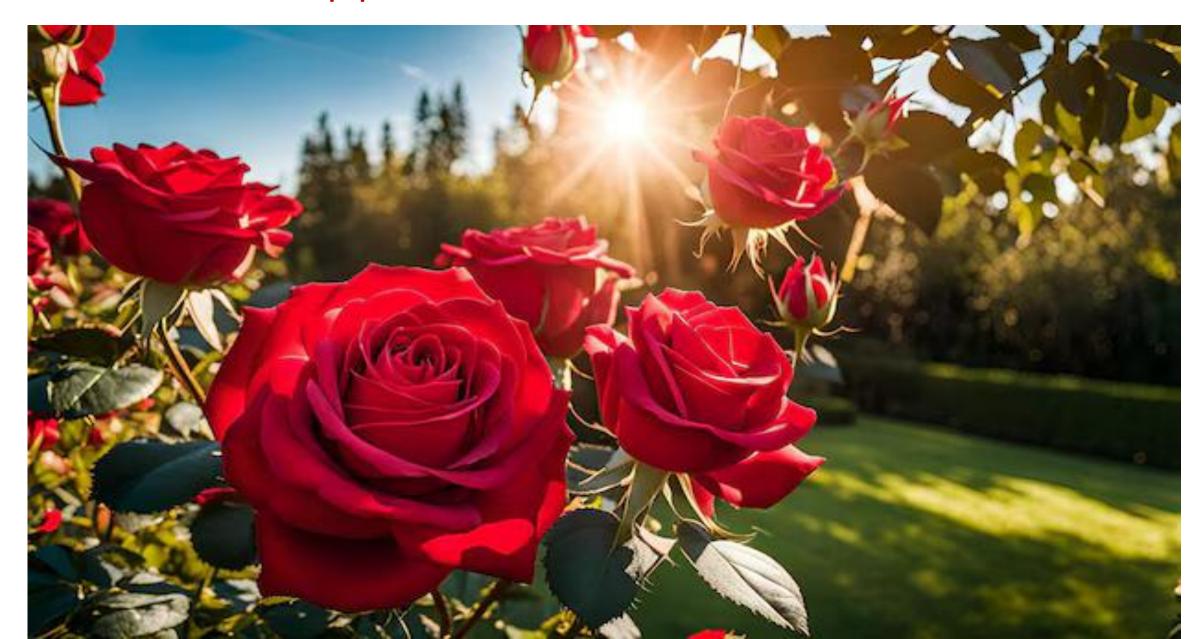
Based on instructions for authors

MLA Tehrani, Shabnam, et al. "Case report: pneumonia in a patient with combined variable immunodeficiency: COVID-19 or pneumocystis pneumonia?." Frontiers in Medicine 9 (2022): 814300.

APA Tehrani, S., Ziaie, S., Kashefizadeh, A., Fadaei, M., Najafiarab, H., & Keyvanfar, A. (2022). Case report: pneumonia in a patient with combined variable immunodeficiency: COVID-19 or pneumocystis pneumonia?. Frontiers in Medicine, 9, 814300.

Chicago Tehrani, Shabnam, Shadi Ziaie, Alireza Kashefizadeh, Mahta Fadaei, Hanieh Najafiarab, and Amirreza Keyvanfar.
"Case report: pneumonia in a patient with combined variable immunodeficiency: COVID-19 or pneumocystis pneumonia?." Frontiers in Medicine 9 (2022): 814300.

Harvard Tehrani, S., Ziaie, S., Kashefizadeh, A., Fadaei, M., Najafiarab, H. and Keyvanfar, A., 2022. Case report: pneumonia in a patient with combined variable immunodeficiency: COVID-19 or pneumocystis pneumonia?. Frontiers in Medicine, 9, p.814300.


Vancouver Tehrani S, Ziaie S, Kashefizadeh A, Fadaei M, Najafiarab H, Keyvanfar A. Case report: pneumonia in a patient with combined variable immunodeficiency: COVID-19 or pneumocystis pneumonia?. Frontiers in Medicine. 2022 Feb 23;9:814300.

BibTeX EndNote RefMan RefWorks

Any Questions?

I Appreciate Your Attention!

